Engaging Classroom Teachers through the New Science Technology/Engineering Framework

Elizabeth Duff, Mass Audubon
Brianna Wilkinson, Museum Institute for Teaching Science
Jane Heinze-Fry, Ph.D.
Agenda

• Welcome/Introductions
• Case Study: Mass Audubon’s Salt Marsh Science Project
• Standards and Strand Maps
• Weather/Climate Change Strand Map
• Worktime
• Wrap-up
Using links to standards to work effectively with teachers.

Mass Audubon’s Salt Marsh Science Project
Guiding Philosophy of Mass Audubon’s Salt Marsh Science Project

• Long term ecological studies provide unique value
• Hands on
 – immersion in field work
 – students get wet and dirty!
 – citizen science
• Consistent with MA and US curriculum frameworks
Salt Marsh Science Project

GOALS:

1. Excite students and their teachers about science through hands-on activities in their own backyards;
2. Encourage students to consider a career in science;
3. Inspire environmental stewardship.

Trained Teachers

Hosted Annual Conference

Worked in Partnership

Engaged Urban Students

Led Field Research

Inspired Stewardship
Most sites are in the Great Marsh Region.

Up to 21 years of data!

<table>
<thead>
<tr>
<th>Site</th>
<th>Years Monitored</th>
<th># of years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byfield- GA</td>
<td>2008, 2015</td>
<td>2</td>
</tr>
<tr>
<td>Danvers</td>
<td>1998-2016</td>
<td>19</td>
</tr>
<tr>
<td>Essex</td>
<td>1998-2016</td>
<td>18</td>
</tr>
<tr>
<td>Gloucester- MP</td>
<td>1998-2016</td>
<td>19</td>
</tr>
<tr>
<td>Gloucester- EP</td>
<td>1999-2016</td>
<td>18</td>
</tr>
<tr>
<td>Ipswich JNR</td>
<td>1999-2016</td>
<td>18</td>
</tr>
<tr>
<td>Ipswich CPT</td>
<td>1999-2016</td>
<td>17</td>
</tr>
<tr>
<td>Ipswich TFR</td>
<td>1996-2016</td>
<td>21</td>
</tr>
<tr>
<td>Newburyport: Joppa</td>
<td>1999-2016</td>
<td>18</td>
</tr>
<tr>
<td>Neponset</td>
<td>2004-2009</td>
<td>7</td>
</tr>
<tr>
<td>PRNWR Refuge</td>
<td>2001-2016</td>
<td>16</td>
</tr>
<tr>
<td>Rockport</td>
<td>1998-2016</td>
<td>17</td>
</tr>
<tr>
<td>Rowley</td>
<td>1996-2016</td>
<td>21</td>
</tr>
<tr>
<td>Salem</td>
<td>2002-2016</td>
<td>15</td>
</tr>
<tr>
<td>Salisbury</td>
<td>1998-2016</td>
<td>19</td>
</tr>
<tr>
<td>Thompson Island</td>
<td>2005-2009</td>
<td>4</td>
</tr>
</tbody>
</table>
Classroom teachers and Mass Audubon Education Coordinators partner to lead student field studies.

- Collecting real data
- Participating in a wider scientific study
- Investigating sites in their own towns and watersheds
Primary Focus: Investigating the invasive reed *Phragmites*. And salinity (How salty the water is.)
An Annual Conference Brings Students & Scientists Together
SMS website hosts the data

Since 1996, students in grades 5 through 12 on the North Shore have been working with Mass Audubon scientists to learn about salt marshes and common reed (*Phragmites australis*), an invasive plant that...
How do we expect the salt marsh to change over time as sea level rises?

Check the things below that would indicate a healthier salt marsh:

Higher salinity ____________________________
Lower salinity ______________________________

More low marsh ________________
Less low marsh _________________________

More salt marsh cordgrass ________
Less salt marsh cordgrass ___________

Taller cordgrass_____________________
Shorter cordgrass ____________

More salt marsh hay _____________
Less salt marsh hay _______________

Marsh spreading into the uplands___
Upland spreading into the marsh ___

Marsh accreting _____________
Marsh eroding ________________

New Questions Related to Climate Change
New Questions Related to Climate Change

How do we expect the salt marsh to change over time as sea level rises?

Check the things below that would indicate a healthier salt marsh:

Higher salinity \(\checkmark\) Lower salinity

More low marsh \(\checkmark\) Less low marsh

More salt marsh cordgrass \(\checkmark\) Less salt marsh cordgrass

Taller cordgrass \(\checkmark\) Shorter cordgrass

More salt marsh hay \(\) Less salt marsh hay \(\checkmark\)

Marsh spreading into the uplands \(\checkmark\) Upland spreading into the marsh \(\)

Marsh accreting \(\) Marsh eroding \(\checkmark\)

[Diagram showing changes in salt marsh over time]
• Accretion- The gradual pile up of additional layers of sediment.

• Erosion- The wearing away of sediment.

• Sediment- sand, soil, clay, dust etc.
What is a Marker Horizon?

- For measuring vertical sediment accretion (gradual pile up of additional layers of sediment).

http://pier-lter.ecosystems.mbl.edu/content marker-horizon-core
Rainfall and Salinity

Salinity vs Rainfall
(Rowley)

Precipitation (mm)

Salinity (ppt)
Rainfall vs *Phragmites* Height

Phragmites Height vs Rainfall Apr-Sept
(Cedar Point, Ipswich)
<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Learning Standard</th>
<th>Description</th>
<th>Salt Marsh Science Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6.MS-ETS2-3(MA)</td>
<td>Choose and safely use appropriate measuring tools, hand tools, fasteners, and common hand-held power tools used to construct a prototype.*</td>
<td>Measure fish volume using appropriate graduated cylinder</td>
</tr>
<tr>
<td>7</td>
<td>7.MS-LS2-1</td>
<td>Analyze and interpret data to provide evidence for the effects of periods of abundant and scarce resources on the growth of organisms and the size of populations in an ecosystem.</td>
<td>Vegetation Transect, Fish Data, Salinity</td>
</tr>
<tr>
<td>7</td>
<td>7.MS-LS2-2</td>
<td>Describe how relationships among and between organisms in an ecosystem can be competitive, predatory, parasitic, and mutually beneficial and that these interactions are found across multiple ecosystems.</td>
<td>Salt Marsh Players (Project Wet Version 1)</td>
</tr>
<tr>
<td>7</td>
<td>7.MS-LS2-4</td>
<td>Analyze data to provide evidence that disruptions (natural or human-made) to any physical or biological component of an ecosystem can lead to shifts in all its populations.</td>
<td>Data Analysis: Fish, Salinity, Vegetation, www.massaudubon.org/saltmarsh</td>
</tr>
<tr>
<td>7</td>
<td>7.MS-LS2-5</td>
<td>Evaluate competing design solutions for protecting an ecosystem. Discuss benefits and limitations of each design.*</td>
<td>Tidal Restriction restoration.</td>
</tr>
<tr>
<td>7</td>
<td>7.MS-LS2-6(MA)</td>
<td>Explain how changes to the biodiversity of an ecosystem—the variety of species found in the ecosystem—may limit the availability of resources humans use</td>
<td>Wetland Metaphors, Invasive Species studies</td>
</tr>
<tr>
<td>8</td>
<td>8.MS-LS1-5</td>
<td>Construct an argument based on evidence for how environmental and genetic factors influence the growth of organisms.</td>
<td>Analyze Impact of drought on Phragmites</td>
</tr>
</tbody>
</table>
Connections to High School MA Science Learning Standards

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Learning Standard</th>
<th>Description</th>
<th>Salt Marsh Science Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS</td>
<td>HS-LS2-1</td>
<td>Analyze data sets to support explanations that biotic and abiotic factors affect ecosystem carrying capacity.</td>
<td>Salinity and Vegetation study</td>
</tr>
<tr>
<td>HS</td>
<td>HS-LS2-2</td>
<td>Use mathematical representations to support explanations that biotic and abiotic factors affect biodiversity, including genetic diversity within a population and species diversity within an ecosystem.</td>
<td>Salinity and Vegetation Graphing and Data Analysis</td>
</tr>
<tr>
<td>HS</td>
<td>HS-LS2-6</td>
<td>Analyze data to show ecosystems tend to maintain relatively consistent numbers and types of organisms even when small changes in conditions occur but that extreme fluctuations in conditions may result in a new ecosystem. Construct an argument supported by evidence that ecosystems with greater biodiversity tend to have greater resistance to change and resilience.</td>
<td>Salt Marsh Science Introduction</td>
</tr>
<tr>
<td>HS</td>
<td>HS-LS2-7</td>
<td>Analyze direct and indirect effects of human activities on biodiversity and ecosystem health, specifically habitat fragmentation, introduction of non-native or invasive species, overharvesting, pollution, and climate change. Evaluate and refine a solution for reducing the impacts of human activities on biodiversity and ecosystem health.*</td>
<td>Invasive Species Investigations, Climate Change investigation: Vegetation Transect and Marker Horizon, Marsh Edge Erosion, Fiddler Crab Study</td>
</tr>
</tbody>
</table>
Connections to Mathematics

Grade 5
Measurement and Data
• Convert like measurement units within a given measurement system.
• Represent and interpret data.
• Geometric measurement: Understand concepts of volume and relate volume to multiplication and to addition.

Geometry
• Graph points on the coordinate plane to solve real-world and mathematical problems.

<table>
<thead>
<tr>
<th>Standards for Mathematical Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Make sense of problems and persevere in solving them.</td>
</tr>
<tr>
<td>2. Reason abstractly and quantitatively.</td>
</tr>
<tr>
<td>3. Construct viable arguments and critique the reasoning of others.</td>
</tr>
<tr>
<td>4. Model with mathematics.</td>
</tr>
<tr>
<td>5. Use appropriate tools strategically.</td>
</tr>
<tr>
<td>6. Attend to precision.</td>
</tr>
<tr>
<td>7. Look for and make use of structure.</td>
</tr>
<tr>
<td>8. Look for an express regularity in repeated reasoning.</td>
</tr>
</tbody>
</table>

Protecting the Nature of Massachusetts
Connections to Common Core Standards: ELA Literacy

CCSS.ELA-Literacy.RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks

CCSS.ELA-Literacy.RST.6-8.9 Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.

Grade 9-10 Literacy

CCSS.ELA-Literacy.RST.9-10.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.

CCSS.ELA-Literacy.RST.9-10.9 Compare and contrast findings presented in a text to those from other sources (including their own experiments), noting when the findings support or contradict previous explanations or accounts.

Grade 11-12 Literacy

CCSS.ELA-Literacy.RST.11-12.3 Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.

CCSS.ELA-Literacy.RST.11-12.9 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.
Connections to Common Core Standards: ELA Writing/Reading

Writing Grades 6-12

- **CCSS.ELA-Literacy.WHST.1** Write arguments focused on *discipline-specific content*

- **CCSS.ELA-Literacy.WHST.2** Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.

Reading Grades 6-12

- **CCSS.ELA-Literacy.RI.11-12.1** Cite strong and thorough textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text, including determining where the text leaves matters uncertain.

- **CCSS.ELA-Literacy.RI.11-12.2** Determine two or more central ideas of a text and analyze their development over the course of the text, including how they interact and build on one another to provide a complex analysis; provide an objective summary of the text.

- **CCSS.ELA-Literacy.RI.11-12.3** Analyze a complex set of ideas or sequence of events and explain how specific individuals, ideas, or events interact and develop over the course of the text.
Connections to Social Studies

Roles of Citizens in the United States
USG.5.2 Describe roles of citizens in Massachusetts and the United States, including voting in public elections, participating in voluntary associations to promote the common good, and participating in political activities to influence public policy decisions of government.
Massachusetts and the Next Generation Science Standards (NGSS)

- Adapted not adopted
- Common Features:
 - Integrated Science and Engineering Practices
 - Grade-by-grade elementary standards
 - Application of science in engineering contexts
- Adaptations
 - Emphasize Technology/Engineering
 - Crosscutting concepts not included
 - “Balance broad concepts with specificity to inform consistent interpretation”
 - High School standards organized by MA course options
 - Standards that are not aligned to NGSS are marked with (MA)

Source: 2016 MA STE Curriculum Framework, pg. 19
What an STE standard looks like

<table>
<thead>
<tr>
<th>5-PS1</th>
<th>Matter and Its Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-PS1-1. Use a model of matter as made of particles too small to be seen to explain common phenomena involving gasses, and phase changes between gas and liquid and between liquid and solid. [Clarification Statement: Examples of common phenomena the model should be able to describe include adding air to expand a balloon, compressing air in a syringe, and evaporating water from a salt water solution.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]</td>
<td></td>
</tr>
</tbody>
</table>

★ Articulates expected performance/demonstration
★ Does not limit curriculum and instruction to the included practice
Learning Progressions

ESS3.C Human impacts on Earth systems

<table>
<thead>
<tr>
<th>Pre-K–2</th>
<th>3–5</th>
<th>6–8</th>
<th>9–10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Things people do can affect the environment but they can make choices to reduce their impacts.</td>
<td>Societal activities can help protect Earth’s resources and environments.</td>
<td>Human activities have altered the biosphere, sometimes damaging it, although changes to environments can have different impacts for different living things. Activities and technologies can be engineered to reduce people’s impacts on Earth.</td>
<td>Sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources.</td>
</tr>
</tbody>
</table>

K–2 Condensed Practices

- Asking questions and defining problems in K–2 builds on prior experiences and progresses to simple descriptive questions that can be tested.

3–5 Condensed Practices

- Asking questions and defining problems in 3–5 builds on K–2 experiences and progresses to specifying qualitative relationships.

6–8 Condensed Practices

- Asking questions and defining problems in 6–8 builds on K–5 experiences and progresses to specifying relationships between variables, clarify arguments and models.

9–12 Condensed Practices

- Asking questions and defining problems in 9–12 builds on K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.

K–2 Condensed Practices

- **Ask questions based on observations to find more information about the natural and/or designed world(s).**

3–5 Condensed Practices

- **Ask questions about what would happen if a variable is changed.**

6–8 Condensed Practices

- **Ask questions that arise from careful observation of phenomena, models, or unexpected results, to clarify and/or seek additional information.**
- **Ask questions to identify and/or clarify evidence and/or the premise(s) of an argument.**
- **Ask questions to determine relationships between independent and dependent variables and relationships in models.**
- **Ask questions to clarify and/or refine a model, an explanation, or an engineering problem.**

9–12 Condensed Practices

- **Ask questions that arise from careful observation of phenomena, or unexpected results, to clarify and/or seek additional information.**
- **Ask questions that arise from examining models or a theory, to clarify and/or seek additional information and relationships.**
- **Ask questions to determine relationships, including quantitative relationships, between independent and dependent variables.**
- **Ask questions to clarify and refine a model, an explanation, or an engineering problem.**
NGSS Weather/Climate Strand Map

MA 2016 STE Topic Strand Map - WEATHER & CLIMATE (August 2016)
Concept Map of Climate Change and Climate Change Education

CLIMATE CHANGE: CAUSES, IMPACTS, SOLUTIONS
Click the small square icons and pop-up titles for more details.

- Human Contributions
 - Currently are primary
- Civil Society
 - Are proposed and implemented by

- Cycles and Natural Contributions
 - In the past were primary

- Human Systems
 - Has impacts on

- Atmosphere
- Lithosphere
- Biosphere
- Hydrosphere

- Earth Systems
 - Move toward sustainable development

- Economy
- Society

Environment
Environmental Educators: Where (on the strand maps/in the standards) do you see things that support your work?

Classroom Teachers: How can environmental educators help you meet the standards you are trying to meet in your classroom?
Thank you for your kind attention.

Contacts:
Elizabeth Duff, lduff@massaudubon.org
Brianna Wilkinson, bwilkinson@mits.org
Jane Heinze-Fry, Ph.D., jahfry@mits.org
Professional Development for Teachers

Museum Institute for Teaching Science

2017 Summer Professional Development Institutes: North Shore Region

North Shore Region
One-Week Institute for Middle and High School Educators

Research and Resiliency: Investigating the Local Effects of Global Changes

Collaborators: Mass Audubon’s Endicott Wildlife Sanctuary, Plum Island Ecosystems Long Term Ecological Research, Ipswich River Watershed Association, US Fish and Wildlife Services, Ipswich High School, Boston University, Salem Sound Coastwatch

Dates: July 17-21 (8:30 am – 3:30 pm); Half Day Introductory Session June 17; Half Day Fall Callback November 4

Registration Fee: $400/participant; $375/participant for team of 2 or more teachers from the same school district

PDPs and Graduate Credit: Framingham State University (3 credits, 67.5 PDPs, $225); 40 PDPs available without graduate credit.

Learn more about the North Shore Region

http://mits.org/2017-summer-professional-development-institutes-north-shore-region/